63 research outputs found

    Constraints on CPT violation from WMAP three year polarization data: a wavelet analysis

    Full text link
    We perform a wavelet analysis of the temperature and polarization maps of the Cosmic Microwave Background (CMB) delivered by the WMAP experiment in search for a parity violating signal. Such a signal could be seeded by new physics beyond the standard model, for which the Lorentz and CPT symmetries may not hold. Under these circumstances, the linear polarization direction of a CMB photon may get rotated during its cosmological journey, a phenomenon also called cosmological birefringence. Recently, Feng et al. have analyzed a subset the WMAP and BOOMERanG 2003 angular power spectra of the CMB, deriving a constraint that mildly favors a non zero rotation. By using wavelet transforms we set a tighter limit on the CMB photon rotation angle \Delta\alpha= -2.5 \pm 3.0 (\Delta\alpha= -2.5 \pm 6.0) at the one (two) \sigma level, consistent with a null detection.Comment: 7 pages, 4 figures, some modifications to match accepted (PRD) version, results unchange

    Statistical challenges in the analysis of Cosmic Microwave Background radiation

    Full text link
    An enormous amount of observations on Cosmic Microwave Background radiation has been collected in the last decade, and much more data are expected in the near future from planned or operating satellite missions. These datasets are a goldmine of information for Cosmology and Theoretical Physics; their efficient exploitation posits several intriguing challenges from the statistical point of view. In this paper we review a number of open problems in CMB data analysis and we present applications to observations from the WMAP mission.Comment: Published in at http://dx.doi.org/10.1214/08-AOAS190 the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Constraining the general reheating phase in the α\alpha-attractor inflationary cosmology

    Get PDF
    In this paper we constrain some aspects of the general postinflationary phase in the context of superconformal α\alpha-attractor models of inflation. In particular, we provide constraints on the duration of the reheating process, NrehN_{reh}, and on the reheating temperature, TrehT_{reh}, simulating possible and future results given by the next-generation of cosmological missions. Moreover, we stress what kinds of equation-of-state parameter, wrehw_{reh}, are favored for different scenarios. The analysis does not depend on the details of the reheating phase and it is performed assuming different measurements of the tensor-to-scalar ratio rr.Comment: 8 pages, 2 figure

    Neutrinos and dark energy constraints from future galaxy surveys and CMB lensing information

    Full text link
    We explore the possibility of obtaining better constraints from future astronomical data by means of the Fisher information matrix formalism. In particular, we consider how cosmic microwave background (CMB) lensing information can improve our parameter error estimation. We consider a massive neutrino scenario and a time-evolving dark energy equation of state in the Λ\LambdaCDM framework. We use Planck satellite experimental specifications together with the future galaxy survey Euclid in our forecast. We found improvements in almost all studied parameters considering Planck alone when CMB lensing information is used. In this case, the improvement with respect to the constraints found without using CMB lensing is of 93% around the fiducial value for the neutrino parameter. The improvement on one of the dark energy parameter reaches 4.4%. When Euclid information is included in the analysis, the improvements on the neutrino parameter constraint is of approximately 128% around its fiducial value. The addition of Euclid information provides smaller errors on the dark energy parameters as well. For Euclid alone, the FoM is a factor of ∼\sim 29 higher than that from Planck alone even considering CMB lensing. Finally, the consideration of a nearly perfect CMB experiment showed that CMB lensing cannot be neglected specially in more precise future CMB experiments since it provided in our case a 6 times better FoM in respect to the unlensed CMB analysis .Comment: Accepted for publication in PR

    Polarization of Cosmic Microwave Background

    Full text link
    In this work we present an extension of the ROMA map-making code for data analysis of Cosmic Microwave Background polarization, with particular attention given to the inflationary polarization B-modes. The new algorithm takes into account a possible cross-correlated noise component among the different detectors of a CMB experiment. We tested the code on the observational data of the BOOMERanG (2003) experiment and we show that we are provided with a better estimate of the power spectra, in particular the error bars of the BB spectrum are smaller up to 20% for low multipoles. We point out the general validity of the new method. A possible future application is the LSPE balloon experiment, devoted to the observation of polarization at large angular scales.Comment: 6 pages, 4 figures, proceedings of the 6th Young Researchers Meeting, L'Aquila, Oct 12th-14th 201

    Real-time Cosmology

    Full text link
    In recent years the possibility of measuring the temporal change of radial and transverse position of sources in the sky in real time have become conceivable thanks to the thoroughly improved technique applied to new astrometric and spectroscopic experiments, leading to the research domain we call Real-time cosmology. We review for the first time great part of the work done in this field, analysing both the theoretical framework and some endeavor to foresee the observational strategies and their capability to constrain models. We firstly focus on real time measurements of the overall redshift drift and angular separation shift in distant source, able to trace background cosmic expansion and large scale anisotropy, respectively. We then examine the possibility of employing the same kind of observations to probe peculiar and proper acceleration in clustered systems and therefore the gravitational potential. The last two sections are devoted to the short time future change of the cosmic microwave background, as well as to the temporal shift of the temperature anisotropy power spectrum and maps. We conclude revisiting in this context the effort made to forecast the power of upcoming experiments like CODEX, GAIA and PLANCK in providing these new observational tools.Comment: 44 pages, 23 figures. References added; revised text, tables and plots. Accepted for publication in Physics Report

    Harmonic Inpainting of the Cosmic Microwave Background Sky: Formulation and Error Estimate

    Full text link
    We develop a new interpolation scheme, based on harmonic inpainting, for reconstructing the cosmic microwave background temperature data within the Galaxy mask from the data outside the mask. We find that, for scale-invariant isotropic random Gaussian fluctuations, the developed algorithm reduces the errors in the reconstructed map for the odd-parity modes significantly for azimuthally symmetric masks with constant galactic latitudes. For a more realistic Galaxy mask, we find a modest improvement in the even-parity modes as well.Comment: 8 pages, 6 figures, Minor change, Discusssion about the Gaussian noise in the WMAP data is added in footnote

    Asymmetries in the local curvature of the WMAP data

    Full text link
    We use the local curvature to investigate the possible existence of non-Gaussianity/asymmetry in the WMAP data. Considering the full sky we find results which are consistent with the Gaussian assumption. However, strong non-Gaussian features emerge when considering the northern and southern galactic hemisphere separately, particularly on scales between 1 and 5 degrees. Quite interestingly, the maximum non-Gaussianity is found for hemispheres centered near the ecliptic poles, which might suggest the presence of some systematic effect. The direction of the asymmetry seems consistent with the findings by Eriksen et al. 2004.Comment: Submitted to ApJ Letter
    • …
    corecore